An optimized workflow for transcriptomic analysis from archival paraformaldehyde-fixed retinal tissues collected by laser capture microdissection.

对通过激光捕获显微切割收集的存档多聚甲醛固定视网膜组织进行转录组分析的优化工作流程

阅读:4
作者:Takahashi Kei, Beltran William A, Sudharsan Raghavi
RNA sequencing (RNA-seq) coupled with laser capture microdissection (LCM) is a powerful tool for transcriptomic analysis in unfixed fresh-frozen tissues. Fixation of ocular tissues for immunohistochemistry commonly involves the use of paraformaldehyde (PFA) followed by embedding in Optimal Cutting Temperature (OCT) medium for long-term cryopreservation. However, the quality of RNA derived from such archival PFA-fixed/OCT-embedded samples is often compromised, limiting its suitability for transcriptomic studies. In this study, we aimed to develop a methodology to extract high-quality RNA from PFA-fixed canine eyes by utilizing LCM to isolate retinal tissue. We demonstrate the efficacy of an optimized LCM and RNA purification protocol for transcriptomic profiling of PFA-fixed retinal specimens. We compared four pairs of canine retinal tissues, where one eye was subjected to PFA-fixation prior to OCT embedding, while the contralateral eye was embedded fresh frozen (FF) in OCT without fixation. Since the RNA obtained from PFA-fixed retinas were contaminated with genomic DNA, we employed two rounds of DNase I treatment to obtain RNA suitable for RNA-seq. Notably, the quality of sequencing reads and gene sets identified from both PFA-fixed and FF tissues were nearly identical. In summary, our study introduces an optimized workflow for transcriptomic profiling from PFA-fixed archival retina. This refined methodology paves the way for improved transcriptomic analysis of preserved ocular tissue, bridging the gap between optimal sample preservation and high-quality RNA data acquisition.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。