Chemical synaptic transmission at the neuromuscular junction (NMJ) is regulated by electrical activity of the motor circuit, but may also be affected by neuromodulation. Here, we assessed the role of neuropeptide signaling in the plasticity of NMJ function in Caenorhabditis elegans. We show that the CAPS (Ca2+-dependent activator protein for secretion) ortholog UNC-31, which regulates exocytosis of dense core vesicles, affects both pre- and post-synaptic functional properties, as well as NMJ-mediated locomotion. Despite reduced evoked acetylcholine (ACh) transmission, the loss of unc-31 results in a more vigorous response to presynaptic stimulation, i.e., enhanced muscle contraction and Ca2+ transients. Based on expression profiles, we identified neuropeptides involved in both cholinergic (FLP-6, FLP-15, NLP-9, NLP-15, NLP-21, and NLP-38) and GABAergic motor neurons (FLP-15, NLP-15), that mediate normal transmission at the NMJ. In the absence of these peptides, neurons fail to upregulate their ACh output in response to increased cAMP signaling; for flp-15; nlp-15 double mutants, we observed overall increased postsynaptic currents, indicating that these neuropeptides may be inhibitory. We also identified proprotein convertases encoded by aex-5/kpc-3 and egl-3/kpc-2 that act synergistically to generate these neuropeptides. We propose that postsynaptic homeostatic scaling, mediated by increased muscle activation, likely through excitability, might compensate for the reduced cholinergic transmission in mutants affected for neuropeptide signaling, thus maintaining net synaptic strength. We show that in the absence of UNC-31 muscle excitability is modulated by upregulating the expression of the muscular L-type voltage-gated Ca2+ channel EGL-19. Our results unveil a role for neuropeptidergic regulation in synaptic plasticity, linking changes in presynaptic transmission to compensatory changes in muscle excitability.
Loss of neuropeptidergic regulation of cholinergic transmission induces homeostatic compensation in muscle cells to preserve synaptic strength.
神经肽对胆碱能传递的调节作用丧失,会诱导肌肉细胞产生稳态补偿,以维持突触强度
阅读:4
作者:Shao Jiajie, Liewald Jana F, Steuer Costa Wagner, Ruse Christiane, Gruber Jens, Djamshedzad Mohammad S, Gebhardt Wulf, Gottschalk Alexander
| 期刊: | PLoS Biology | 影响因子: | 7.200 |
| 时间: | 2025 | 起止号: | 2025 May 8; 23(5):e3003171 |
| doi: | 10.1371/journal.pbio.3003171 | 研究方向: | 神经科学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
