Early-life sodium restriction programs autonomic dysfunction and salt sensitivity in male C57BL/6J mice.

早期限制钠摄入会导致雄性 C57BL/6J 小鼠出现自主神经功能障碍和盐敏感性

阅读:7
作者:Ziegler Alisha A, Lawton Samuel B R, Fekete Eva M, Brozoski Daniel T, Wagner Valerie A, Grobe Connie C, Sigmund Curt D, Nakagawa Pablo, Grobe Justin L, Segar Jeffrey L
Preterm birth increases the risk of cardiometabolic disease in adulthood. Infants born during the second trimester of pregnancy, a critical period of hypothalamic development, are at risk of sodium (Na) depletion due to renal immaturity and large urine Na losses. We previously demonstrated in male mice that Na restriction during the equivalent mouse hypothalamic development period [postnatal day (PD)21-PD42] programs long-term changes in energy balance via increased thermogenic sympathetic nervous activity. We therefore hypothesized that early-life Na restriction programs changes in cardiovascular control via altered autonomic activity. C57BL/6J male mice were supplied a low (0.04%) Na or supplemented (0.30%) Na diet from PD21 to PD42, before return to standard (0.15%) Na diet. Hemodynamic and autonomic functions were assessed by radiotelemetry and acute administration of autonomic antagonists before and after all animals were switched to a high Na diet (HSD; 1% Na) at 12 wk of age. Mice were additionally treated with the angiotensin II type 1 receptor antagonist losartan for 2 wk. On standard diet, early-life Na restriction resulted in small but significantly different hemodynamic responses to autonomic blockers without any effect on systolic blood pressure (SBP) or heart rate. HSD increased SBP in 0.04% but not 0.30% Na mice, accompanied by increased cardiac sympathetic activity. Losartan had a greater BP-lowering effect in early-life Na-restricted mice. Our findings suggest that Na restriction during a critical hypothalamic developmental period programs long-term changes in the autonomic control of cardiovascular functions and may offer insight into the increased risk of cardiovascular disease in former preterm infants.NEW & NOTEWORTHY Mechanisms by which preterm birth increases the risk of adult-onset cardiometabolic diseases are not well understood. The renin-angiotensin system (RAS) has been implicated in the programming of adult disease, although contributors to RAS dysregulation remain to be identified. Findings from this study suggest that failure to maintain postnatal sodium homeostasis during a critical developmental window may contribute to RAS dysregulation and the risk of salt sensitivity of autonomic and cardiovascular function.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。