Alanine substitution in cellobiohydrolase provides new insights into substrate threading.

纤维二糖水解酶中的丙氨酸取代为底物穿线提供了新的见解

阅读:5
作者:Mitsuzawa Shigenobu, Fukuura Maiko, Shinkawa Satoru, Kimura Keiichi, Furuta Tadaomi
The glycoside hydrolase family 7 (GH7) member cellobiohydrolase (CBH) is a key enzyme that degrades crystalline cellulose, an important structural component of plant cell walls. As GH7 CBH is a major component in the enzyme mixture used to degrade biomass into fermentable glucose in biorefineries, enhancing its catalytic activity will significantly impact development in this field. GH7 CBH possesses a catalytic tunnel through which cellulose substrates are threaded and hydrolysed. Despite numerous studies dissecting this processive mechanism, the role of amino acid residues in the tunnel remains not fully understood. Herein, we examined the respective contributions of nine amino acid residues in the catalytic tunnel of GH7 CBH from Talaromyces cellulolyticus by substitution with alanine. As a result, N62A and K203A mutants were found to possess significantly higher cellulase activities than wild type. Molecular dynamics simulations showed that the N62 residue interacted strongly with the cellulose substrate, impeding threading, while the N62A mutant allowed cellulose to proceed more smoothly. Furthermore, the W63 residue was observed to facilitate twisting of the cellulose substrate in our simulations. This study helps elucidate cellulose threading and provides insight into biomass hydrolysis.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。