Background: Right heart catheterization (RHC) is the gold-standard for diagnosis of pulmonary hypertension (PH) but is a terminal procedure in neonatal mice. The objective was to validate echocardiographic measures of PH to establish the diagnostic capability against pulmonary vascular histology in neonatal mice. Methods: Adult mice, exposed to hypoxia or normoxia, were assessed by echocardiography and RHC to evaluate right ventricle (RV) morphometry and function. Echocardiographic measures identified in adult mice were then used to evaluate PH characteristics in hypoxia-exposed neonatal mice. Physiological parameters were compared to histopathology in all mice. Results: Hypoxia-challenged adult mice developed PH with RHC, demonstrating confirmed elevated RV systolic pressure (RVSP), RV hypertrophy, and increased cross-sectional area and neomuscularization of pulmonary vessels. Echocardiography-derived RV free wall (RVFW) thickness correlated with RV mass. Tricuspid valve annulus tissue Doppler imaging (TV TDI), tricuspid annular plane systolic excursion (TAPSE), pulmonary artery acceleration measures (PAAT), and TAPSE Ã PAAT (a measure of RV work) all correlated with RVSP determined by RHC. In neonatal mice exposed to hypoxia, PAAT, TV TDI, TAPSE, and TAPSE Ã PAAT were decreased and RVFW thickness was increased, correlating with the histologic phenotype of PH. Conclusions: Echocardiographic indices of RV morphology and function provide reliable estimates of invasive RV hemodynamics in hypoxia-induced PH.
Echocardiographic Assessment of Pulmonary Hemodynamics and Right Ventricular Performance in Neonatal Murine Hypoxia.
新生小鼠缺氧时肺血流动力学和右心室功能的超声心动图评估
阅读:5
作者:Woo Kel Vin, Levy Philip T, Weinheimer Carla J, Hauck Amanda L, Hamvas Aaron, Ornitz David M, Kovacs Attila, Singh Gautam K
| 期刊: | Journal of Cardiovascular Development and Disease | 影响因子: | 2.300 |
| 时间: | 2025 | 起止号: | 2025 Aug 19; 12(8):316 |
| doi: | 10.3390/jcdd12080316 | 研究方向: | 心血管 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
