Increases in extracellular potassium concentration ([K(+)](o)), which can occur during neuronal activity and under pathological conditions such as ischemia, lead to a variety of potentially detrimental effects on neuronal function. Although astrocytes are known to contribute to the clearance of excess K(+)(o), the mechanisms are not fully understood. We examined the potential role of mitochondria in sequestering K(+) in astrocytes. Astrocytes were loaded with the fluorescent K(+) indicator PBFI and release of K(+) from mitochondria into the cytoplasm was examined after uncoupling the mitochondrial membrane potential with carbonyl cyanide m-chlorophenylhydrazone (CCCP). Under the experimental conditions employed, transient applications of elevated [K(+)](o) led to increases in K(+) within mitochondria, as assessed by increases in the magnitudes of cytoplasmic [K(+)] ([K(+)](i)) transients evoked by brief exposures to CCCP. When mitochondrial K(+) sequestration was impaired by prolonged application of CCCP, there was a robust increase in [K(+)](i) upon exposure to elevated [K(+)](o). Blockade of plasmalemmal K(+) uptake routes by ouabain, Ba(2+), or a mixture of voltage-activated K(+) channel inhibitors reduced K(+) uptake into mitochondria. Also, reductions in mitochondrial K(+) uptake occurred in the presence of mito-K(ATP) channel inhibitors. Rises in [K(+)](i) evoked by brief applications of CCCP following exposure to high [K(+)](o) were also reduced by gap junction blockers and in astrocytes isolated from connexin43-null mice, suggesting that connexins also play a role in K(+) uptake into astrocyte mitochondria. We conclude that mitochondria play a key role in K(+)(o) handling by astrocytes.
Temporary sequestration of potassium by mitochondria in astrocytes.
星形胶质细胞线粒体对钾的暂时性螯合
阅读:3
作者:Kozoriz Michael G, Church John, Ozog Mark A, Naus Christian C, Krebs Claudia
| 期刊: | Journal of Biological Chemistry | 影响因子: | 3.900 |
| 时间: | 2010 | 起止号: | 2010 Oct 8; 285(41):31107-19 |
| doi: | 10.1074/jbc.M109.082073 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
