BACKGROUND: Various agricultural sidestreams have been demonstrated as feedstock to produce cellulose. To the best of our knowledge, there is no research work on the potential of agricultural sidestream from cowpea (Vigna unguiculata (L.) Walp.), a neglected and underutilised crop to produce cellulose fibres. Conventional methods to produce cellulose consume large amounts of chemicals (NaOH) and produce a high amount of effluent waste. Herein, we investigated extrusion pre-treatment without and with an alkali followed by bleaching as an alternative method to conventional alkaline pre-treatment followed by bleaching to produce cellulose fibres from cowpea sidestream. RESULTS: Cellulose extracted by extrusion without and with mild alkali followed by bleaching consumed about 20 times less NaOH compared to the conventional method and produced less effluent waste. Extrusion with mild alkali followed by bleaching resulted in higher cellulose yield, purity, and crystallinity compared to extrusion without an alkali followed by bleaching. However, the conventional method resulted in higher cellulose yield, purity and crystallinity compared to extrusion pre-treatment followed by bleaching. Scanning electron microscopy revealed that micro-sized cellulose fibres with an average diameter of 10-15âμm were extracted using both methods. Notably, cellulose fibres extracted using extrusion pre-treatment were shorter than those extracted using the conventional method. CONCLUSION: Extrusion pre-treatment is a promising continuous alternative to alkaline pre-treatment to produce micro-sized cellulose fibres from low-value, underutilised cowpea lignocellulosic sidestream, for potential use as a filler in composite plastics. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Extrusion pre-treatment of cowpea (Vigna unguiculata (L.) Walp.) lignocellulosic sidestream to produce cellulose fibres.
豇豆(Vigna unguiculata (L.) Walp.)木质纤维素侧流的挤压预处理,以生产纤维素纤维
阅读:5
作者:Masanabo Mondli Abednicko, Keränen Janne Tapani, Ray Suprakas Sinha, Emmambux M Naushad
| 期刊: | Journal of the Science of Food and Agriculture | 影响因子: | 3.500 |
| 时间: | 2025 | 起止号: | 2025 Jan 30; 105(2):1375-1384 |
| doi: | 10.1002/jsfa.13927 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
