A synthetic approach to biology is a promising technique for various applications. Recent advancements have demonstrated the feasibility of constructing synthetic two-input logic gates in Escherichia coli cells with long-term memory based on DNA inversion induced by recombinases. Moreover, recent evidences indicate that DNA inversion mediated by genome editing tools is possible. Powerful genome editing technologies, such as CRISPR-Cas9 systems, have great potential to be exploited to implement large-scale recombinase-based circuits. What remains unclear is how to construct arbitrary Boolean functions based on these emerging technologies. In this paper, we lay the theoretical foundation formalizing the connection between recombinase-based genetic circuits and Boolean functions. It enables systematic construction of any given Boolean function using recombinase-based logic gates. We further develop a methodology leveraging existing electronic design automation (EDA) tools to automate the synthesis of complex recombinase-based genetic circuits with respect to area and delay optimization. In silico experimental results demonstrate the applicability of our proposed methods as a useful tool for recombinase-based genetic circuit synthesis and optimization.
Logic Synthesis of Recombinase-Based Genetic Circuits.
基于重组酶的基因回路的逻辑综合
阅读:5
作者:Chiu Tai-Yin, Jiang Jie-Hong R
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2017 | 起止号: | 2017 Oct 9; 7(1):12873 |
| doi: | 10.1038/s41598-017-07386-3 | 研究方向: | 免疫/内分泌 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
