Neuro-oncology focuses on the diagnosis and treatment of brain tumors, which, despite their rarity, are associated with high mortality due to their invasiveness and limited treatment options. Emerging evidence suggests that dopamine (DA), a neurotransmitter crucial for cognitive and emotional processes, and its receptors may influence tumor growth and the tumor microenvironment. This study aimed to evaluate the potential anticancer effects of repurposed antipsychotic dopamine-targeting drugs (Clozapine, CLZ; Pimozide, PIM; Olanzapine, OLZ; and Risperidone, RIS) and antiemetic drugs (Domperidone, DOM; Droperidol, DRO) on neuroblastoma (SH-SY5Y) and glioblastoma (A172) cell lines, and to assess whether their efficacy is modulated by oxidative stress and DA synthesis. The drugs were first tested individually, followed by co-treatment with tyrosine (Tyr), a dopamine precursor, and hydrogen peroxide (H(2)O(2)), an inducer of oxidative stress. Additionally, drug activity was evaluated in the simultaneous presence of H(2)O(2) and Tyr. CLZ exhibited the highest cytotoxicity in both cell lines, suggesting strong anticancer potential and also synergism among the different combinations, particularly in SH-SY5Y. Liquid chromatography of the extracellular medium showed greater Tyr consumption in SH-SY5Y compared to A172 cells, indicating a higher dependence on extracellular Tyr to mitigate drug- and/or stress-induced cytotoxicity. In summary, several of the repurposed antipsychotics demonstrated cytotoxic effects on central nervous system tumor cells, with CLZ showing the most promising activity, even under oxidative stress conditions. These findings support further investigation into dopamine-targeting drugs as potential therapeutic agents in neuro-oncology.
Repurposed Antipsychotics as Potential Anticancer Agents: Clozapine Efficacy and Dopaminergic Pathways in Neuroblastoma and Glioblastoma.
重新利用抗精神病药物作为潜在的抗癌药物:氯氮平在神经母细胞瘤和胶质母细胞瘤中的疗效和多巴胺能通路
阅读:5
作者:Moura Catarina, Gouveia Maria João, Vale Nuno
| 期刊: | Life-Basel | 影响因子: | 3.400 |
| 时间: | 2025 | 起止号: | 2025 Jul 12; 15(7):1097 |
| doi: | 10.3390/life15071097 | 研究方向: | 神经科学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
