Vitamin B(12) belongs to a family of structurally diverse cofactors with over a dozen natural analogs, collectively referred to as cobamides. Most bacteria encode cobamide-dependent enzymes, many of which can only utilize a subset of cobamide analogs. Some bacteria employ a mechanism called cobamide remodeling, a process in which cobamides are converted into other analogs to ensure that compatible cobamides are available in the cell. Here, we characterize an additional pathway for cobamide remodeling that is distinct from the previously characterized ones. Cobamide synthase (CobS) is an enzyme required for cobamide biosynthesis that attaches the lower ligand moiety in which the base varies between analogs. In a heterologous model system, we previously showed that Vibrio cholerae CobS (VcCobS) unexpectedly conferred remodeling activity in addition to performing the known cobamide biosynthesis reaction. Here, we show that additional Vibrio species perform the same remodeling reaction, and we further characterize VcCobS-mediated remodeling using bacterial genetics and in vitro assays. We demonstrate that VcCobS acts upon the cobamide pseudocobalamin directly to remodel it, a mechanism which differs from the known remodeling pathways in which cobamides are first cleaved into biosynthetic intermediates. This suggests that some CobS homologs have the additional function of cobamide remodeling, and we propose the term "direct remodeling" for this process. This characterization of yet another pathway for remodeling suggests that cobamide profiles are highly dynamic in polymicrobial environments, with remodeling pathways conferring a competitive advantage. IMPORTANCE Cobamides are widespread cofactors that mediate metabolic interactions in complex microbial communities. Few studies directly examine cobamide profiles, but several have shown that mammalian gastrointestinal tracts are rich in cobamide analogs. Studies of intestinal bacteria, including beneficial commensals and pathogens, show variation in the ability to produce and utilize different cobamides. Some bacteria can convert imported cobamides into compatible analogs in a process called remodeling. Recent discoveries of additional cobamide remodeling pathways, including this work, suggest that remodeling is an important factor in cobamide dynamics. Characterization of such pathways is critical in understanding cobamide flux and nutrient cross-feeding in polymicrobial communities, and it facilitates the establishment of microbiome manipulation strategies via modulation of cobamide profiles.
Direct Cobamide Remodeling via Additional Function of Cobamide Biosynthesis Protein CobS from Vibrio cholerae.
通过霍乱弧菌钴胺素生物合成蛋白 CobS 的附加功能直接重塑钴胺素
阅读:4
作者:Ma Amy T, Beld Joris
| 期刊: | Journal of Bacteriology | 影响因子: | 3.000 |
| 时间: | 2021 | 起止号: | 2021 Jul 8; 203(15):e0017221 |
| doi: | 10.1128/JB.00172-21 | 研究方向: | 免疫/内分泌 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
