Pathogenic marine bacteria are found in environments and food sources with high salt concentrations, which the bacteria must effectively manage for their survival. Several mechanisms, such as the transport of ions and compatible solutes as well as changes in aerobic and anaerobic respiration, confer salt tolerance to bacteria. In this study, we found that the outer membrane protein OmpW was related to salt stress in Vibrio cholerae and that ompW gene transcription and expression were up-regulated in cultures containing high NaCl concentrations. Deletion of ompW resulted in reduced V. cholerae growth in hypersaline culture conditions. Supplements of the compatible solutes betaine, L-carnitine, or L-lysine enhanced the growth of V. cholerae in hypersaline media. Supplements of betaine or L-lysine had the same growth enhancement effect on the ompW-deletion mutant cultured in hypersaline media, whereas L-carnitine supplementation did not restore mutant growth. In addition, the uptake of L-carnitine was decreased in the ompW-deletion mutant. Our study showed that among the multiplex factors that enhance the hypersaline tolerance of V. cholerae, OmpW also plays a role by transporting L-carnitine.
The Outer Membrane Protein OmpW Enhanced V. cholerae Growth in Hypersaline Conditions by Transporting Carnitine.
外膜蛋白 OmpW 通过运输肉碱增强霍乱弧菌在高盐条件下的生长
阅读:4
作者:Fu Xiuping, Zhang Jingyun, Li Tianyi, Zhang Mei, Li Jie, Kan Biao
| 期刊: | Frontiers in Microbiology | 影响因子: | 4.500 |
| 时间: | 2017 | 起止号: | 2018 Jan 22; 8:2703 |
| doi: | 10.3389/fmicb.2017.02703 | 研究方向: | 免疫/内分泌 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
