Deployment of a Vibrio cholerae ordered transposon mutant library in a quorum-competent genetic background.

在具有群体感应能力的遗传背景下部署霍乱弧菌有序转座子突变体库

阅读:3
作者:Grant Nkrumah A, Donkor Gracious Yoofi, Sontz Jordan T, Soto William, Waters Christopher M
Vibrio cholerae, the causative agent of cholera, has sparked seven pandemics in recent centuries, with the current one being the most prolonged. V. cholerae's pathogenesis hinges on its ability to switch between low and high cell density gene regulatory states, enabling transmission between host and the environment. Previously, a transposon mutant library for V. cholerae was created to support investigations aimed toward uncovering the genetic determinants of its pathogenesis. However, subsequent sequencing uncovered a mutation in the gene luxO of the parent strain, rendering mutants unable to exhibit high cell density behaviors. In this study, we used chitin-independent natural transformation to move transposon insertions from these low cell density mutants into a wildtype genomic background. Library transfer was aided by a novel gDNA extraction we developed using thymol, which also showed high lysis-specificity for Vibrio. The resulting Grant Library comprises 3,102 unique transposon mutants, covering 79.8% of V. cholerae's open reading frames. Whole genome sequencing of randomly selected mutants demonstrates 100% precision in transposon transfer to cognate genomic positions of the recipient strain. Notably, in no instance did the luxO mutation transfer into the wildtype background. Our research uncovered density-dependent epistasis in growth on inosine, an immunomodulatory metabolite secreted by gut bacteria that is implicated in enhancing gut barrier functions. Additionally, Grant Library mutants retain the plasmid that enables rapid, scarless genomic editing. In summary, the Grant Library reintroduces organismal relevant genetic contexts absent in the low cell density locked library equivalent.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。