Anti-inflammatory and gut microbiota regulatory effects of ultrasonic degraded polysaccharides from Auricularia auricula-judae in DSS-induced colitis mice.

超声降解木耳多糖对DSS诱导结肠炎小鼠的抗炎和肠道菌群调节作用

阅读:4
作者:Islam Tahidul, Xu Baojun, Bian Zhaoxiang
Auricularia auricula-judae is a widely cultivated mushroom species known for its edible and medicinal properties. Polysaccharides have been the focus of research because of their potential bioactivities; nonetheless, the structural complexity and molecular weight have hindered a complete understanding of their bioactivities. In this study, AP-1 polysaccharide was isolated from A. auricula-judae and subjected to ultrasonic degradation at different time points to improve their anti-inflammatory effects. The results showed that when AP-1 was degraded for 9 min (AP-2) and 20 min (AP-3), the NO inhibition rate was significantly increased in LPS-stimulated RAW 264.7 cells. The structural and physiochemical properties of native and degraded polysaccharides were analyzed, and it was found that the degradation process significantly reduced molecular weight and altered the particle size, viscosity, crystallinity, and helical structure. Furthermore, native and degraded polysaccharides (AP-1, AP-2, and AP-3) anti-inflammatory effects were investigated in the DSS-induced colitis mouse model. Degraded polysaccharides resulted in significant improvements, including recovery from weight loss, reduced disease activity, shortened colon length, and decreased inflammation, while AP-3 showed the most promising effects. Gut microbiota 16S rRNA sequencing revealed that AP-3 potentially increases healthy gut microbiota and inhibits unhealthy gut microbiota. Overall, this study demonstrates that ultrasonic degradation could be a great technique to modify polysaccharides' MW and physiochemical properties to improve anti-inflammatory and gut microbiota regulatory effects.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。