Vibrio cholerae, the causative agent of the severe diarrheal disease cholera, has evolved signal transduction systems to control the expression of virulence determinants. It was previously shown that two cysteine residues in the periplasmic domain of TcpP are important for TcpP dimerization and activation of virulence gene expression by responding to environmental signals in the small intestine such as bile salts. In the cytoplasmic domain of TcpP, there are another four cysteine residues, C19, C51, C58, and C124. In this study, the functions of these four cysteine residues were investigated and we found that only C58 is essential for TcpP dimerization and for activating virulence gene expression. To better characterize this cysteine residue, site-directed mutagenesis was performed to assess the effects on TcpP homodimerization and virulence gene activation. A TcpP(C) (58) (S) mutant was unable to form homodimers and activate virulence gene expression, and did not colonize infant mice. However, a TcpP(C) (19) (/) (51) (/) (124) (S) mutant was not attenuated for virulence. These results suggest that C58 of TcpP is indispensable for TcpP function and is essential for V. cholerae virulence factor production and pathogenesis.
The 58th Cysteine of TcpP Is Essential for Vibrio cholerae Virulence Factor Production and Pathogenesis.
TcpP 的第 58 个半胱氨酸对于霍乱弧菌毒力因子的产生和致病性至关重要
阅读:9
作者:Shi Mengting, Li Na, Xue Yuanyuan, Zhong Zengtao, Yang Menghua
| 期刊: | Frontiers in Microbiology | 影响因子: | 4.500 |
| 时间: | 2020 | 起止号: | 2020 Feb 6; 11:118 |
| doi: | 10.3389/fmicb.2020.00118 | 研究方向: | 微生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
