Analyses of suppressor mutations have been extremely valuable in understanding gene function. However, techniques for mapping suppressor mutations are not available for most bacterial species. Here, we used high-throughput sequencing technology to identify spontaneously arising suppressor mutations that enabled disruption of rpoE (which encodes sigma(E)) in Vibrio cholerae, the agent of cholera. The alternative sigma factor sigma(E), which is activated by envelope stress, promotes expression of factors that help preserve and/or restore cell envelope integrity. In Escherichia coli, rpoE is an essential gene that can only be disrupted in the presence of additional suppressor mutations. Among a panel of independent V. cholerae rpoE mutants, more than 75% contain suppressor mutations that reduce production of OmpU, V. cholerae's principal outer membrane porin. OmpU appears to be a key determinant of V. cholerae's requirement for and production of sigma(E). Such dependence upon a single factor contrasts markedly with regulation of sigma(E) in E. coli, in which numerous factors contribute to its activation and none is dominant. We also identified a suppressor mutation that differs from all previously described suppressors in that it elevates, rather than reduces, sigma(E)'s activity. Finally, analyses of a panel of rpoE mutants shed light on the mechanisms by which suppressor mutations may arise in V. cholerae.
High-throughput sequencing reveals suppressors of Vibrio cholerae rpoE mutations: one fewer porin is enough.
高通量测序揭示了霍乱弧菌 rpoE 突变的抑制因子:少一个孔蛋白就足够了
阅读:2
作者:Davis Brigid M, Waldor Matthew K
| 期刊: | Nucleic Acids Research | 影响因子: | 13.100 |
| 时间: | 2009 | 起止号: | 2009 Sep;37(17):5757-67 |
| doi: | 10.1093/nar/gkp568 | 研究方向: | 免疫/内分泌 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
