Detection of Influenza and Other Respiratory Viruses in Air Sampled From a University Campus: A Longitudinal Study.

对大学校园空气样本中流感病毒和其他呼吸道病毒的检测:一项纵向研究

阅读:4
作者:Xie Chenyi, Lau Eric H Y, Yoshida Tomoyo, Yu Han, Wang Xin, Wu Huitao, Wei Jianjian, Cowling Ben, Peiris Malik, Li Yuguo, Yen Hui-Ling
BACKGROUND: Respiratory virus-laden particles are commonly detected in the exhaled breath of symptomatic patients or in air sampled from healthcare settings. However, the temporal relationship of detecting virus-laden particles at nonhealthcare locations vs surveillance data obtained by conventional means has not been fully assessed. METHODS: From October 2016 to June 2018, air was sampled weekly from a university campus in Hong Kong. Viral genomes were detected and quantified by real-time reverse-transcription polymerase chain reaction. Logistic regression models were fitted to examine the adjusted odds ratios (aORs) of ecological and environmental factors associated with the detection of virus-laden airborne particles. RESULTS: Influenza A (16.9% [117/694]) and influenza B (4.5% [31/694]) viruses were detected at higher frequencies in air than rhinovirus (2.2% [6/270]), respiratory syncytial virus (0.4% [1/270]), or human coronaviruses (0% [0/270]). Multivariate analyses showed that increased crowdedness (aOR, 2.3 [95% confidence interval {CI}, 1.5-3.8]; P < .001) and higher indoor temperature (aOR, 1.2 [95% CI, 1.1-1.3]; P < .001) were associated with detection of influenza airborne particles, but absolute humidity was not (aOR, 0.9 [95% CI, .7-1.1]; P = .213). Higher copies of influenza viral genome were detected from airborne particles >4 μm in spring and <1 μm in autumn. Influenza A(H3N2) and influenza B viruses that caused epidemics during the study period were detected in air prior to observing increased influenza activities in the community. CONCLUSIONS: Air sampling as a surveillance tool for monitoring influenza activity at public locations may provide early detection signals on influenza viruses that circulate in the community.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。