Elucidating a novel metabolic pathway for enhanced antimicrobial glycolipid biosurfactant production in the yeast Meyerozyma guilliermondii.

阐明酵母 Meyerozyma guilliermondii 中增强抗菌糖脂生物表面活性剂生产的新型代谢途径

阅读:3
作者:Songdech Pattanan, Jayasekara L A Channa Bhathiya, Watchaputi Kwanrutai, Butkinaree Chutikarn, Yingchutrakul Yodying, Soontorngun Nitnipa
Biosurfactants offer good advantages over synthetic counterparts, including biodegradability, environmentally friendly and low toxicity. This study employed a yeast Meyerozyma guilliermondii MX strain for bioconversion of lignocellulosic xylose and palm oil to valuable glycolipid biosurfactant with desirable properties. The objective was to elucidate metabolic pathways related to production of glycolipids and its functional properties. To enhance de novo glycolipid production, manipulation of responsible enzymatic genes was conducted using media and environmental means in comparison to the industrial glycolipid producer, Candida bombicola. Proteomic profiles of yeast cells grown with or without palm oil uncovered novel key metabolic enzymes, namely fatty acid biosynthetic enzymes, leading to formation of glycolipid precursors. qRT-PCR identified some cluster genes responsible for biosynthesis of desirable glycolipids. Finally, LC-MS-based lipidomics of glycolipid fraction identified 15-(2'-O-β-D-glucopyranosyl-β-D-glucopyranosyloxy)hexadecanoic acid 1',4″-lactone 6',6″-diacetate (663.4525 m/z) as a major product. Using co-carbon substrates in the presence of salt and zinc, maximum glycolipid yield was achieved (55.72 g/L) with 55.30% emulsification activity and 10 mg/L of CMCs. Mixed glycolipids demonstrated antibiofilm activity against Candida albicans shown by reduction of metabolic activity. The novel biosurfactant-producing yeast M. guilliermondii MX is a promising cell factory of new antibiofilm glycolipids with potential for industrial-scale up.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。