Antimicrobial resistance (AMR) is a global public health issue. Rapid and accurate antimicrobial susceptibility tests (AST) on bacteria isolates would facilitate appropriate choice of antibiotics, in which patients receive appropriate treatment and the emergence of multidrug-resistant organisms could be prevented simultaneously. In this study, we have developed a microfluidic device named Self Dilution for Faster Antimicrobial Susceptibility Testing (SDFAST). This SlipChip-based device consists of two layers of microchips, allowing injection of bacterial suspension and antibiotics by simply connecting the two chips. By slipping one microchip against another in a single press of the microchip, the antibiotics can be diluted within seconds and be well mixed with bacterial samples. By combining SDFAST with a water-soluble tetrazolium salt-8 (WST-8) assay, a range of clinically prevalent bacteria, including Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, and Staphylococci species, were tested under various antibiotics. Color analysis after 4-6 h of incubation showed an abrupt change in the WST-8 color of certain wells with diluted antibiotics, proving that instrument-free and immediate identification of minimum inhibitory concentration (MIC) could be achieved. The testing on 51 clinical isolates had an agreement of 92%, proving the accuracy of our method. These results validated its advantages of simple operation, rapid testing, and low sample consumption comparing to conventional methods, which require 16-24âh of incubation. Therefore, our method shows great potential to be further developed into a medical instrument for automated medical testing and point-of-care diagnosis.
Rapid antimicrobial susceptibility tests performed by self-diluting microfluidic chips for drug resistance studies and point-of-care diagnostics.
利用自稀释微流控芯片进行快速抗菌药物敏感性测试,用于耐药性研究和即时诊断
阅读:15
作者:Wat Jenny Ka-Hei, Xu Miao, Nan Lang, Lin Haisong, To Kelvin Kai-Wang, Shum Ho Cheung, Hassan Sammer UÉ©
| 期刊: | Microsystems & Nanoengineering | 影响因子: | 9.900 |
| 时间: | 2025 | 起止号: | 2025 May 28; 11(1):110 |
| doi: | 10.1038/s41378-025-00938-y | 研究方向: | 微生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
