Adrenergic α2 receptors are implicated in seizure-induced respiratory arrest in DBA/1 mice.

肾上腺素能α2受体与DBA/1小鼠癫痫发作引起的呼吸骤停有关

阅读:6
作者:Zhang Rui, Tan Zheren, Niu Jianguo, Feng Hua-Jun
AIMS: Sudden unexpected death in epilepsy (SUDEP) is a serious and underestimated public health burden. Both clinical and animal studies show that seizure-induced respiratory arrest (S-IRA) is the primary cause of death in SUDEP. Our previous studies demonstrated that atomoxetine, a norepinephrine reuptake inhibitor (NRI), suppresses S-IRA in DBA/1 mice, suggesting that noradrenergic neurotransmission modulates S-IRA. However, it remains unclear which adrenoceptors are implicated in S-IRA in DBA/1 mice. MATERIALS AND METHODS: Naïve DBA/1 mice exhibit a low incidence of S-IRA, but after primed by acoustic stimulation, they become consistently susceptible to S-IRA. Atomoxetine, adrenoceptor agonists, antagonists or vehicle was intraperitoneally (i.p.) administered alone or in combination, and the effects of drug treatments on S-IRA incidence and seizure behaviors were examined. KEY FINDINGS: The incidence of S-IRA in primed DBA/1 mice was significantly reduced by clonidine, an α2 adrenoceptor agonist, as compared with that of the vehicle control. However, compared with the vehicle control, S-IRA was not altered by cirazoline, an α1 agonist. Consistent with previous reports, atomoxetine reduced S-IRA in primed DBA/1 mice. The suppressing effect of atomoxetine on S-IRA was prevented by injection of an α2 adrenoceptor antagonist, yohimbine or atipamezole, but not by prazosin, an α1 antagonist. Administration of α1 or α2 antagonists alone did not promote the incidence of S-IRA in nonprimed DBA/1 mice. SIGNIFICANCE: These data demonstrate that noradrenergic neurotransmission modulates S-IRA predominantly via α2 adrenoceptors in DBA/1 mice, indicating that selective activation of α2 adrenoceptors can potentially prevent SUDEP.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。