A scalable, chromatography-free, biocatalytic method to produce the xyloglucan heptasaccharide XXXG.

一种可扩展的、无需色谱分离的生物催化方法来生产木葡聚糖七糖XXXG

阅读:4
作者:Rodd Andrew M, Mawhinney William M, Brumer Harry
Xyloglucan oligosaccharides (XyGOs) are highly branched, complex carbohydrates with a variety of chemical and biotechnological applications. Due to the regular repeating pattern of sidechain substitution of the xyloglucan backbone, well-defined XyGOs are readily accessed for analytical and preparative purposes by specific hydrolysis of the polysaccharide with endo-glucanases. To broaden the application potential of XyGOs, we present here an optimized, scalable method to access large quantities of galactosylated XyGOs by treatment of the bulk agricultural by-product, tamarind kernel powder (TKP), with a highly specific endo-xyloglucanase at high-solids content. Subsequent β-galactosidase treatment reduced XyGO complexity to produce exclusively the branched heptasaccharide XXXG (Xyl(3)Glc(4): [α-D-Xylp-(1 → 6)]-β-D-Glcp-(1 → 4)-[α-D-Xylp-(1 → 6)]-β-D-Glcp-(1 → 4)-[α-D-Xylp-(1 → 6)]-β-D-Glcp-(1 → 4)-D-Glcp). The challenge of removing the co-product galactose was overcome by fermentation with baker's yeast, thereby avoiding chromatography and other fractionation steps to yield highly pure XXXG. This simplified approach employs many of the core concepts of green chemistry and engineering, enables facile production of 100 g quantities of XyGOs and XXXG for laboratory use, and serves as a guide to further production scale-up for applications, including as prebiotics, plant growth effectors and elicitors, and building blocks for glycoconjugate synthesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。