Evaluation of the anticancer effects of hydroxycinnamic acid isomers on breast cancer stem cells.

评价羟基肉桂酸异构体对乳腺癌干细胞的抗癌作用

阅读:8
作者:Burhanoğlu Tülin, Halbutoğulları Zehra Seda, Turhal Gulseren, Demiroglu-Zergeroglu Asuman
Research on breast cancer stem cells (BCSCs) is crucial for improving our understanding of their roles in tumor resistance, metastasis, and relapse. This study investigated the anti-cancer effects of two isomers of hydroxycinnamic acids (HCA): para-coumaric acid (PCA) and ortho-coumaric acid (OCA) on breast cancer stem cells (BCSCs). The isolated and characterized stem cells contained CD44 + /CD24 surface markers, exhibited high levels of aldehyde dehydrogenase activity, and were able to form mammospheres. The evaluation of HCAs on stem cell proliferation, cell cycle, and apoptosis was conducted by comparing them with MCF-7, the luminal breast cancer cell line. The viability and immunoblot analyses demonstrated that HCA applications resulted in a dose-dependent decrease in the number of viable cells and inhibited phosphorylation of Extracellular regulated kinases 1/2 (ERK1/2). These findings were supported by the detection of suppressed colony formation and delayed wound-healing in HCA-exposed cells. E-cadherin expression increased in OCA-treated cells. Additionally, the arrest of G1/S phase progression and the downregulation of Cyclin D1 expression exhibited that OCA and PCA-induced cytostatic effects in BSCS cells. After treatment, the increased Annexin-V/7-AAD staining, along with elevated expression of caspase-3/7 and a decreased Bcl-2/Bax ratio, indicated apoptosis mediated by the activation of Janus kinase (JNK) and p38 Mitogen-activated kinase (p38 MAPK). In conclusion, both OCA and PCA exhibit anti-carcinogenic potential on BCSCs; However, OCA has a stronger effect and is becoming a promising candidate for further research.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。