The recently discovered fungal and bacterial polysaccharide monooxygenases (PMOs) are capable of oxidatively cleaving chitin, cellulose, and hemicelluloses that contain β(1â4) linkages between glucose or substituted glucose units. They are also known collectively as lytic PMOs, or LPMOs, and individually as AA9 (formerly GH61), AA10 (formerly CBM33), and AA11 enzymes. PMOs share several conserved features, including a monocopper center coordinated by a bidentate N-terminal histidine residue and another histidine ligand. A bioinformatic analysis using these conserved features suggested several potential new PMO families in the fungus Neurospora crassa that are likely to be active on novel substrates. Herein, we report on NCU08746 that contains a C-terminal starch-binding domain and an N-terminal domain of previously unknown function. Biochemical studies showed that NCU08746 requires copper, oxygen, and a source of electrons to oxidize the C1 position of glycosidic bonds in starch substrates, but not in cellulose or chitin. Starch contains α(1â4) and α(1â6) linkages and exhibits higher order structures compared with chitin and cellulose. Cellobiose dehydrogenase, the biological redox partner of cellulose-active PMOs, can serve as the electron donor for NCU08746. NCU08746 contains one copper atom per protein molecule, which is likely coordinated by two histidine ligands as shown by X-ray absorption spectroscopy and sequence analysis. Results indicate that NCU08746 and homologs are starch-active PMOs, supporting the existence of a PMO superfamily with a much broader range of substrates. Starch-active PMOs provide an expanded perspective on studies of starch metabolism and may have potential in the food and starch-based biofuel industries.
A family of starch-active polysaccharide monooxygenases.
一类能激活淀粉的多糖单加氧酶
阅读:3
作者:Vu Van V, Beeson William T, Span Elise A, Farquhar Erik R, Marletta Michael A
| 期刊: | Proceedings of the National Academy of Sciences of the United States of America | 影响因子: | 9.100 |
| 时间: | 2014 | 起止号: | 2014 Sep 23; 111(38):13822-7 |
| doi: | 10.1073/pnas.1408090111 | 研究方向: | 免疫/内分泌 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
