Here, we used Raman spectroscopy to characterize the effects of chitin treatment and fungal inoculations on Arabidopsis thaliana and Brassica vegetables. Chitin, a recognized fungal pathogen-associated molecular pattern (PAMP), elicited a dose dependent positive Elicitor Response Index (ERI) in wild-type Arabidopsis. Mutant plants lacking chitin receptors (cerk1 and lyk4/5) displayed minimal ERI, whereas fls2 mutant deficient in the bacterial-specific flg22 receptor was hyper-responsive. These results confirm critical role of chitin receptors in activating downstream pathways and highlighting distinct responses in two separate pattern-triggered immunity (PTI) systems. Inoculations of Colletotrichum higginsianum and Alternaria brassicicola induced significant changes in Infection Response Index (IRI) values, with the former giving positive IRI at 12-48 hours post-inoculation whereas the latter exhibited a transient negative IRI before transitioning to positive values. Notably, Raman shifts could predict fungal infection before the appearance of visible symptoms, establishing Raman shifts as a potential early diagnostic marker. Comparative analyses of infected Brassica vegetables revealed varied sensitivity to fungal pathogens and a correlation between symptom severity and IRI values. Furthermore, randomized controlled trials validated the reliability of Raman technology for early, pre-symptomatic detection of fungal infections, achieving an accuracy rate of 76.2% in Arabidopsis and 72.5% in Pak-Choy (Brassica rapa chinensis). Principal component analysis differentiated Raman spectral features associated with fungal and bacterial infections, emphasizing their unique profiles and reinforcing the utility of Raman spectroscopy for early detection of pathogen-related plant stress. Our work supports the application of non-invasive diagnostic techniques in agricultural practices, enabling timely intervention against crop diseases.
Early detection of fungal infection of Arabidopsis and brassica by Raman spectroscopy.
利用拉曼光谱早期检测拟南芥和芸苔属植物的真菌感染
阅读:3
作者:Kuo Song-Yi, Chiu Ling-Ying, Jain Ekta, Singh Gajendra Pratap, Bin Jamaludin Muhammad Nabil Syafiq, Ram Rajeev J, Chua Nam-Hai
| 期刊: | Frontiers in Plant Science | 影响因子: | 4.800 |
| 时间: | 2025 | 起止号: | 2025 Aug 15; 16:1649206 |
| doi: | 10.3389/fpls.2025.1649206 | 研究方向: | 微生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
