Fast Single-Particle Tracking of Membrane Proteins Combined with Super-Resolution Imaging of Actin Nanodomains.

快速单颗粒膜蛋白追踪与肌动蛋白纳米域超分辨率成像相结合

阅读:5
作者:Mazloom-Farsibaf Hanieh, Kanagy William K, Lidke Diane S, Lidke Keith A
Membrane protein dynamics regulates cell functions by initiating downstream signaling cascades. The cell membrane is compartmentalized into nanodomains by actin structures, restricting lateral protein diffusion. Single-particle tracking offers high spatiotemporal resolution for studying protein dynamics in living cells. However, directly observing actin filaments that form barriers of nanodomains for fast protein diffusion is challenging due to their size being below the diffraction limit. Single-molecule localization microscopy resolves these structures but requires imaging in fixed cells. We integrated fast single-particle tracking with single-molecule localization microscopy to generate a dataset of membrane protein dynamics and actin filaments within the same cells at the nanoscales. Optimizing the fixation protocol enabled transition from live-cell tracking to fixed-cell super-resolution imaging. Data for the high-affinity IgE receptor, a transmembrane protein, and the GPI-anchored protein, an outer leaflet protein, was collected at 490 Hz. After fixation, actin filaments were imaged using dSTORM. The treatment of actin structures with phalloidin and PMA generated a dataset of distinct actin architectures for studying their potential influence on membrane protein dynamics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。