In single molecule localization-based super-resolution imaging, high labeling density or the desire for greater data collection speed can lead to clusters of overlapping emitter images in the raw super-resolution image data. We describe a Bayesian inference approach to multiple-emitter fitting that uses Reversible Jump Markov Chain Monte Carlo to identify and localize the emitters in dense regions of data. This formalism can take advantage of any prior information, such as emitter intensity and density. The output is both a posterior probability distribution of emitter locations that includes uncertainty in the number of emitters and the background structure, and a set of coordinates and uncertainties from the most probable model.
Bayesian Multiple Emitter Fitting using Reversible Jump Markov Chain Monte Carlo.
基于可逆跳跃马尔可夫链蒙特卡罗的贝叶斯多发射体拟合
阅读:5
作者:Fazel Mohamadreza, Wester Michael J, Mazloom-Farsibaf Hanieh, Meddens Marjolein B M, Eklund Alexandra S, Schlichthaerle Thomas, Schueder Florian, Jungmann Ralf, Lidke Keith A
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2019 | 起止号: | 2019 Sep 24; 9(1):13791 |
| doi: | 10.1038/s41598-019-50232-x | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
