The centrosomal recruitment of γ-tubulin and its microtubule nucleation activity is α-fodrin guided

γ-微管蛋白的中心体募集及其微管成核活性由α-胞衬蛋白引导

阅读:8
作者:Jamuna S Sreeja, Athira Jyothy, Rohith Kumar Nellikka, Sayan Ghorai, Paul Ann Riya, Jackson James, Suparna Sengupta

Abstract

The regulation and recruitment of γ-TuRCs, the prime nucleator of microtubules, to the centrosome are still thrust areas of research. The interaction of fodrin, a sub-plasmalemmal cytoskeletal protein, with γ-tubulin is a new area of interest. To understand the cellular significance of this interaction, we show that depletion of α-fodrin brings in a significant reduction of γ-tubulin in neural cell centrosomes making it functionally under-efficient. This causes a loss of nucleation ability that cannot efficiently form microtubules in interphase cells and astral microtubules in mitosis. Fluorescence Recovery after Photobleaching (FRAP) experiment implies that α-fodrin is important in the recruitment of γ-tubulin to the centrosome resulting in the aforementioned effects. Further, our experiments indicate that the interaction of α-fodrin with certain pericentriolar matrix proteins such as Pericentrin and CDK5RAP2 are crucial for the recruitment of γ-tubulin to the centrosome. Earlier we reported that α-fodrin limits the nucleation potential of γ-TuRC. In that context, this study suggests that α-fodrin is a γ-tubulin recruiting protein to the centrosome thus preventing cytoplasmic microtubule nucleation and thereby compartmentalizing the process to the centrosome for maximum efficiency. Summary statementα-fodrin is a γ-tubulin interacting protein that controls the process of γ-tubulin recruitment to the centrosome and thereby regulates the microtubule nucleation capacity spatially and temporally.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。