High-risk neuroblastoma frequently exhibits segmental gain of chromosome 17q, including the locus of PPM1D, which encodes the phosphatase WIP1, a regulator of p53 activity, DNA repair, and apoptosis. High expression of PPM1D is correlated to poor prognosis, and genetic or pharmacologic inhibition of WIP1 suppresses neuroblastoma growth. Here, we show that combining drugs that target WIP1 and H3K27 demethylation induces synergistic cytotoxicity in neuroblastoma. We screened 527 different compounds together with inhibitors of WIP1 and identified a strong cytotoxic synergism between the WIP1 inhibitor SL-176 and GSK-J4, a specific inhibitor of the H3K27 demethylase JMJD3. Viability assays in neuroblastoma cell lines and treatment of tumor spheroids confirmed the synergistic effect of combining SL-176 with GSK-J4. Immunoblot experiments demonstrated a marked effect on WIP1 downstream targets and apoptosis markers, while qPCR showed a synergistic upregulation of p53 downstream targets PUMA and p21. RNA sequencing revealed a vast number of differentially expressed genes, suggesting a pervasive effect of this drug combination on transcription, with enrichment of pathways involved in DNA damage response. Finally, this drug combination was confirmed to reduce tumor growth in zebrafish xenograft experiments. In conclusion, the combination of the WIP1 inhibitor SL-176 and the epigenetic modifier GSK-J4 induces synergistic cytotoxicity in neuroblastoma cells by potentiating p53 downstream effects.
Targeted inhibition of WIP1 and histone H3K27 demethylase activity synergistically suppresses neuroblastoma growth.
靶向抑制 WIP1 和组蛋白 H3K27 去甲基化酶活性可协同抑制神经母细胞瘤的生长
阅读:8
作者:Treis Diana, Lundberg Kristina Ihrmark, Bell Nicola, Polychronopoulos Panagiotis Alkinoos, Tümmler Conny, à kerlund Emma, Aliverti Stefania, Lilienthal Ingrid, Pepich Adena, Seashore-Ludlow Brinton, Sakaguchi Kazuyasu, Kogner Per, Johnsen John Inge, Wickström Malin
| 期刊: | Cell Death & Disease | 影响因子: | 9.600 |
| 时间: | 2025 | 起止号: | 2025 Apr 19; 16(1):318 |
| doi: | 10.1038/s41419-025-07658-1 | 靶点: | H3 |
| 研究方向: | 神经科学 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
