BACKGROUND/OBJECTIVES: Medulloblastoma (MB) is the most common high-grade paediatric brain tumour, with group 3 MB patients having the worst prognosis. A high prevalence of group 3 tumours shows overexpression of the MYC oncogene, making it a potential therapeutic target. However, attempts to directly inhibit MYC have so far demonstrated limited success. Dihydroorotate dehydrogenase (DHODH), a crucial enzyme of the pyrimidine biosynthesis process, has emerged as an up-and-coming target in oncology, as its inhibition has shown promise in several cancers. METHODS: In this study, we investigated the efficacy of brequinar, a DHODH inhibitor, in MB, with a focus on group 3. In vitro, BRQ's effects on cell viability and MYC expression were tested in seven MB cell lines. In vivo, a novel zebrafish xenograft model was used to evaluate BRQ's impact on tumour growth and toxicity. RESULTS: High DHODH expression was identified in group 3 and shh MB subgroups, correlating with poor survival and MYC expression. BRQ demonstrated nanomolar efficacy in inducing apoptosis and reducing MYC expression in group 3 MB cell lines. Finally, we established a novel zebrafish xenograft model and demonstrated that BRQ significantly inhibited tumour growth at non-toxic concentrations in vivo, particularly in the D458 metastatic MB cell line. CONCLUSIONS: Our findings indicate that DHODH is a promising therapeutic target in group 3 MBs. Furthermore, BRQ shows potential for clinical application, effectively reducing tumour growth and MYC expression in vitro and in vivo. Moreover, our newly established zebrafish xenograft model offers a promising avenue for rapid in vivo drug testing for use in MB.
DHODH Inhibition Suppresses MYC and Inhibits the Growth of Medulloblastoma in a Novel In Vivo Zebrafish Model.
在新型斑马鱼体内模型中,DHODH 抑制剂可抑制 MYC 并抑制髓母细胞瘤的生长
阅读:9
作者:Tsea Ioanna, Olsen Thale Kristin, Polychronopoulos Panagiotis Alkinoos, Tümmler Conny, Sykes David B, Baryawno Ninib, Dyberg Cecilia
| 期刊: | Cancers | 影响因子: | 4.400 |
| 时间: | 2024 | 起止号: | 2024 Dec 13; 16(24):4162 |
| doi: | 10.3390/cancers16244162 | 种属: | Fish |
| 研究方向: | 细胞生物学 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
