The protein pirin, which is involved in a variety of biological processes, is conserved from prokaryotic microorganisms, fungi, and plants to mammals. It acts as a transcriptional cofactor or an apoptosis-related protein in mammals and is involved in seed germination and seedling development in plants. In prokaryotes, while pirin is stress induced in cyanobacteria and may act as a quercetinase in Escherichia coli, the functions of pirin orthologs remain mostly uncharacterized. We show that the Serratia marcescens pirin (pirin(Sm)) gene encodes an ortholog of pirin protein. Protein pull-down and bacterial two-hybrid assays followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and electrospray ionization-tandem mass spectrometry analyses showed the pyruvate dehydrogenase (PDH) E1 subunit as a component interacting with the pirin(Sm) gene. Functional analyses showed that both PDH E1 subunit activity and PDH enzyme complex activity are inhibited by the pirin(Sm) gene in S. marcescens CH-1. The S. marcescens CH-1 pirin(Sm) gene was subsequently mutated by insertion-deletion homologous recombination. Accordingly, the PDH E1 and PDH enzyme complex activities and cellular ATP concentration increased up to 250%, 140%, and 220%, respectively, in the S. marcescens CH-1 pirin(Sm) mutant. Concomitantly, the cellular NADH/NAD(+) ratio increased in the pirin(Sm) mutant, indicating increased tricarboxylic acid (TCA) cycle activity. Our results show that the pirin(Sm) gene plays a regulatory role in the process of pyruvate catabolism to acetyl coenzyme A through interaction with the PDH E1 subunit and inhibiting PDH enzyme complex activity in S. marcescens CH-1, and they suggest that pirin(Sm) is an important protein involved in determining the direction of pyruvate metabolism towards either the TCA cycle or the fermentation pathways.
Pirin regulates pyruvate catabolism by interacting with the pyruvate dehydrogenase E1 subunit and modulating pyruvate dehydrogenase activity.
Pirin 通过与丙酮酸脱氢酶 E1 亚基相互作用并调节丙酮酸脱氢酶活性来调节丙酮酸分解代谢
阅读:4
作者:Soo Po-Chi, Horng Yu-Tze, Lai Meng-Jiun, Wei Jun-Rong, Hsieh Shang-Chen, Chang Yung-Lin, Tsai Yu-Huan, Lai Hsin-Chih
| 期刊: | Journal of Bacteriology | 影响因子: | 3.000 |
| 时间: | 2007 | 起止号: | 2007 Jan;189(1):109-18 |
| doi: | 10.1128/JB.00710-06 | 研究方向: | 代谢 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
