Cross talk between type III secretion and flagellar assembly systems in Pseudomonas aeruginosa.

铜绿假单胞菌中 III 型分泌系统与鞭毛组装系统之间的相互作用

阅读:4
作者:Soscia Chantal, Hachani Abderrahman, Bernadac Alain, Filloux Alain, Bleves Sophie
Pseudomonas aeruginosa cytotoxicity is linked to a type III secretion system (T3SS) that delivers effectors into the host cell. We show here that a negative cross-control exists between T3SS and flagellar assembly. We observed that, in a strain lacking flagella, T3SS gene expression, effector secretion, and cytotoxicity were increased. Conversely, we revealed that flagellar-gene expression and motility were decreased in a strain overproducing ExsA, the T3SS master regulator. Interestingly, a nonmotile strain lacking the flagellar filament (DeltafliC) presented a hyperefficient T3SS and a nonmotile strain assembling flagella (DeltamotAB) did not. More intriguingly, a strain lacking motCD genes is a flagellated strain with a slight defect in swimming. However, in this strain, T3SS gene expression was up-regulated. These results suggest that flagellar assembly and/or mobility antagonizes the T3SS and that a negative cross talk exists between these two systems. An illustration of this is the visualization by electron microscopy of T3SS needles in a nonmotile P. aeruginosa strain, needles which otherwise are not detected. The molecular basis of the cross talk is complex and remains to be elucidated, but proteins like MotCD might have a crucial role in signaling between the two processes. In addition, we found that the GacA response regulator negatively affects the T3SS. In a gacA mutant, the T3SS effector ExoS is hypersecreted. Strikingly, GacA was previously reported as a positive regulator for motility. Globally, our data document the idea that some virulence factors are coordinately but inversely regulated, depending on the bacterial colonization phase and infection types.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。