Functional Characterization of RseC in the SoxR Reducing System and Its Role in Oxidative Stress Response in Escherichia coli.

大肠杆菌中SoxR还原系统中RseC的功能表征及其在氧化应激反应中的作用

阅读:4
作者:Lee Kang-Lok, Lee Joon-Hee, Kim Yun-Hee, Roe Jung-Hye
The reducing system of SoxR consists of a putative electron transfer system encoded by the rsxABCDGE operon, RseC encoded from the unlinked rpoE-rseABC operon, and ApbE. RseC is composed of two transmembrane helices, with both the N-terminal and C-terminal domains located in the cytoplasm. The N-terminal domain has a four-cysteine motif, CX(5)CX(2)CX(5)C, in the cytoplasm, with the latter three cysteines highly conserved in RseC homologs, allowing the SoxR reducer complex to function in Escherichia coli. These three cysteines can form an oxygen-sensitive Fe-S cluster when only the N-terminal domain is expressed in a truncated form. Without the C-terminal domain, RseC shows no significant difference in interaction with the SoxR reducer complex, but its ability to complement the function of an rseC mutant is greatly reduced. Additionally, the rseC mutant exhibits weak resistance to cumene hydrogen peroxide in the stationary phase and increased sensitivity to hydrogen peroxide in the exponential phase, independent of the SoxR regulon. This suggests that the full-length sequence of RseC is essential for its function and that it may have SoxR-independent additional roles.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。