Connexin 43 Affects Pulmonary Artery Reactivity via Changes in Nitric Oxide Production and Influences Proliferative and Migratory Responses in Mouse Pulmonary Artery Fibroblasts.

连接蛋白 43 通过改变一氧化氮的产生影响肺动脉反应性,并影响小鼠肺动脉成纤维细胞的增殖和迁移反应

阅读:7
作者:Wali Saad, Hwej Abdmajid, Welsh David J, Wilson Kathryn, Kennedy Simon, Dempsie Yvonne
Pulmonary hypertension (PH) is a complex condition characterized by pulmonary artery constriction and vascular remodeling. Connexin 43 (Cx43), involved in cellular communication, may play a role in PH development. Cx43 heterozygous (Cx43(+/-)) mice show partial protection against hypoxia-induced pulmonary remodeling, with prior research highlighting its role in rat pulmonary artery fibroblast (PAF) proliferation and migration. However, inhibiting Cx43 may compromise nitric oxide (NO)-mediated vascular relaxation. This study evaluated the effects of Cx43 on mouse PAF (MPAF) proliferation, migration, NO-dependent and independent pulmonary vascular relaxation, and NO synthesis. Proliferation and migration were assessed in Cx43(+/-) MPAFs under normoxic and hypoxic conditions. Vascular responses were analyzed in intra-lobar pulmonary artery rings with acetylcholine (ACh), SNAP, and U46619, while NO production was measured in lung tissue. Both genetic knockdown and pharmacological inhibition of Cx43 significantly reduced serum-induced proliferation but not migration under normoxia, while (37,43)Gap27 inhibited hypoxia-induced proliferation and migration. The effects of genetic knockdown and pharmacological inhibition of Cx43 on vascular reactivity were also investigated. NO-dependent and independent relaxations and NO production were reduced in Cx43(+/-) mice by (37,43)Gap27. In conclusion, while Cx43 inhibition may protect against PAF proliferation and migration, it could also impair pulmonary vascular relaxation, at least in part through a reduction in NO signaling. Further studies are needed to fully understand the mechanisms by which Cx43 influences NO signaling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。