Deoxynivalenol Induces Intestinal Damage and Inflammatory Response through the Nuclear Factor-κB Signaling Pathway in Piglets.

脱氧雪腐镰刀菌烯醇通过核因子-β信号通路诱导仔猪肠道损伤和炎症反应

阅读:3
作者:Wang Xi-Chun, Zhang Ya-Fei, Cao Li, Zhu Lei, Huang Ying-Ying, Chen Xiao-Fang, Chu Xiao-Yan, Zhu Dian-Feng, Ur Rahman Sajid, Feng Shi-Bin, Li Yu, Wu Jin-Jie
Deoxynivalenol (DON) is highly toxic to animals and humans, but pigs are most sensitive to it. The porcine mucosal injury related mechanism of DON is not yet fully clarified. Here, we investigated DON-induced injury in the intestinal tissues of piglet. Thirty weanling piglets [(Duroc × Landrace) × Yorkshire] were randomly divided into three groups according to single factor experimental design (10 piglets each group). Piglets were fed a basal diet in the control group, while low and high dose groups were fed a DON diet (1300 and 2200 μg/kg, respectively) for 60 days. Scanning electron microscopy results indicated that the ultrastructure of intestinal epithelial cells in the DON-treated group was damaged. The distribution and optical density (OD) values of zonula occludens 1 (ZO-1) protein in the intestinal tissues of DON-treated groups were decreased. At higher DON dosage, interleukin (IL)-1β, IL-6, and tumor necrosis factor-α mRNA levels were elevated in the intestinal tissues. The mRNA and protein levels of NF-κB p65, IκB-α, IKKα/β, iNOS, and COX-2 in the small intestinal mucosa were abnormally altered with an increase in DON concentration. These results indicate that DON can persuade intestinal damage and inflammatory responses in piglets via the nuclear factor-κB signaling pathway.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。