Within-Host Adaptation Mediated by Intergenic Evolution in Pseudomonas aeruginosa.

铜绿假单胞菌中由基因间进化介导的宿主内适应

阅读:5
作者:Khademi S M Hossein, Sazinas Pavelas, Jelsbak Lars
Bacterial pathogens evolve during the course of infection as they adapt to the selective pressures that confront them inside the host. Identification of adaptive mutations and their contributions to pathogen fitness remains a central challenge. Although mutations can either target intergenic or coding regions in the pathogen genome, studies of host adaptation have focused predominantly on molecular evolution within coding regions, whereas the role of intergenic mutations remains unclear. Here, we address this issue and investigate the extent to which intergenic mutations contribute to the evolutionary response of a clinically important bacterial pathogen, Pseudomonas aeruginosa, to the host environment, and whether intergenic mutations have distinct roles in host adaptation. We characterize intergenic evolution in 44 clonal lineages of P. aeruginosa and identify 77 intergenic regions in which parallel evolution occurs. At the genetic level, we find that mutations in regions under selection are located primarily within regulatory elements upstream of transcriptional start sites. At the functional level, we show that some of these mutations both increase or decrease transcription of genes and are directly responsible for evolution of important pathogenic phenotypes including antibiotic sensitivity. Importantly, we find that intergenic mutations facilitate essential genes to become targets of evolution. In summary, our results highlight the evolutionary significance of intergenic mutations in creating host-adapted strains, and that intergenic and coding regions have different qualitative contributions to this process.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。