Cloning and characterization of the phosphatidylserine synthase gene of Agrobacterium sp. strain ATCC 31749 and effect of its inactivation on production of high-molecular-mass (1-->3)-beta-D-glucan (curdlan).

对农杆菌属 ATCC 31749 菌株的磷脂酰丝氨酸合成酶基因进行克隆和表征,并研究其失活对高分子量 (1-->3)-β-D-葡聚糖(凝胶多糖)产量的影响

阅读:4
作者:Karnezis Tara, Fisher Helen C, Neumann Gregory M, Stone Bruce A, Stanisich Vilma A
Genes involved in the production of the extracellular (1-->3)-beta-glucan, curdlan, by Agrobacterium sp. strain ATCC 31749 were described previously (Stasinopoulos et al., Glycobiology 9:31-41, 1999). To identify additional curdlan-related genes whose protein products occur in the cell envelope, the transposon TnphoA was used as a specific genetic probe. One mutant was unable to produce high-molecular-mass curdlan when a previously uncharacterized gene, pss(AG), encoding a 30-kDa, membrane-associated phosphatidylserine synthase was disrupted. The membranes of the mutant lacked phosphatidylethanolamine (PE), whereas the phosphatidylcholine (PC) content was unchanged and that of both phosphatidylglycerol and cardiolipin was increased. In the mutant, the continued appearance of PC revealed that its production by this Agrobacterium strain is not solely dependent on PE in a pathway controlled by the Pss(AG) protein at its first step. Moreover, PC can be produced in a medium lacking choline. When the pss(AG)::TnphoA mutation was complemented by the intact pss(AG) gene, both the curdlan deficiency and the phospholipid profile were restored to wild-type, demonstrating a functional relationship between these two characteristics. The effect of the changed phospholipid profile could occur through an alteration in the overall charge distribution on the membrane or a specific requirement for PE for the folding into or maintenance of an active conformation of any or all of the structural proteins involved in curdlan production or transport.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。