A trade-off between proliferation and defense in the fungal pathogen Cryptococcus at alkaline pH is controlled by the transcription factor GAT201.

在碱性 pH 值下,真菌病原体隐球菌的增殖和防御之间的权衡是由转录因子 GAT201 控制的

阅读:5
作者:Hughes Elizabeth S, Tuck Laura R, He Zhenzhen, Ballou Elizabeth R, Wallace Edward W J
Cryptococcus is a fungal pathogen whose virulence relies on proliferation in and dissemination to host sites, and on synthesis of a defensive yet metabolically costly polysaccharide capsule. Regulatory pathways required for Cryptococcus virulence include a GATA-like transcription factor, Gat201, that regulates Cryptococcal virulence in both capsule-dependent and capsule-independent ways. Here we show that Gat201 is part of a negative regulatory pathway that limits fungal survival at alkaline pH. RNA-seq analysis found strong induction of GAT201 expression within minutes of transfer to RPMI media at alkaline pH. Microscopy, growth curves, and colony forming unit assays show that in RPMI at alkaline pH wild-type Cryptococcus neoformans yeast cells produce capsule but do not bud or maintain viability, while gat201Δ cells make buds and maintain viability, yet fail to produce capsule. GAT201 is required for transcriptional upregulation of a specific set of genes, the majority of which are direct Gat201 targets. Evolutionary analysis shows that Gat201 is in a subfamily of GATA-like transcription factors that is conserved within pathogenic fungi but absent in model yeasts. This work identifies the Gat201 pathway as controlling a trade-off between proliferation and production of defensive capsule. The assays established here will allow characterisation of the mechanisms of action of the Gat201 pathway. Together, our findings urge improved understanding of the regulation of proliferation as a driver of fungal pathogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。