DNA targeting by compact Cas9d and its resurrected ancestor.

紧凑型 Cas9d 及其复活的祖先进行 DNA 靶向

阅读:4
作者:Ocampo Rodrigo Fregoso, Bravo Jack P K, Dangerfield Tyler L, Nocedal Isabel, Jirde Samatar A, Alexander Lisa M, Thomas Nicole C, Das Anjali, Nielson Sarah, Johnson Kenneth A, Brown Christopher T, Butterfield Cristina N, Goltsman Daniela S A, Taylor David W
Type II CRISPR endonucleases are widely used programmable genome editing tools. Recently, CRISPR-Cas systems with highly compact nucleases have been discovered, including Cas9d (a type II-D nuclease). Here, we report the cryo-EM structures of a Cas9d nuclease (747 amino acids in length) in multiple functional states, revealing a stepwise process of DNA targeting involving a conformational switch in a REC2 domain insertion. Our structures provide insights into the intricately folded guide RNA which acts as a structural scaffold to anchor small, flexible protein domains for DNA recognition. The sgRNA can be truncated by up to ~25% yet still retain activity in vivo. Using ancestral sequence reconstruction, we generated compact nucleases capable of efficient genome editing in mammalian cells. Collectively, our results provide mechanistic insights into the evolution and DNA targeting of diverse type II CRISPR-Cas systems, providing a blueprint for future re-engineering of minimal RNA-guided DNA endonucleases.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。