Sepsis triggers a systemic inflammatory response that can lead to acute lung injury (ALI). Salidroside (SAL) has many pharmacological activities such as antiinflammatory and anti-oxidation. The objective of the study was to explore the mechanism of SAL on ALI caused by sepsis. A model of ALI in septic mice was established by cecal ligation and puncture. Following SAL treatment, the effect of SAL on the ferroptosis pathway in mice was analyzed. The pathological damage of lung tissue, the levels of inflammatory factors and apoptosis in bronchoalveolar lavage fluid (BALF) of mice were evaluated, and the changes of gene expression level and metabolite content abundance were explored by combining transcriptomics and metabolomics analysis. The effect of SAL on ferroptosis in mice with lung injury was observed by intraperitoneal injection of ferroptosis activator Erastin or ferroptosis inhibitor Ferrostatin-1 to promote or inhibit ferroptosis in mice. SAL significantly alleviated the pathological damage of lung tissue, decreased the number of TUNEL positive cells and the levels of TNF-α, IL-1β, IL-6 in BALF, and increased the level of IL- 10 in lung injury mice. Moreover, the Fe(2+) content and malondialdehyde decreased significantly, the reactive oxygen species and glutathione content increased significantly, and the arachidonic acid metabolites 20-hydroxyeicosatetraenoic acid (20- HETE), (5Z, 8Z, 10E, 14Z)-12-Oxoeicosa-5,8,10,14-tetraenoic acid (12-OxOETE), (5Z, 8Z, 10E, 14Z)-(12S)-12-Hydroxyeicosa-5,8,10,14-tetraenoic acid (12(S)-HETE), (5Z, 8Z, 14Z)-11,12-Dihydroxyeicosa-5,8,14-trienoic acid (11,12-DHET), (5Z, 11Z, 14Z)-8,9- Dihydroxyeicosa-5,11,14-trienoic acid, Leukotriene B4, Leukotriene D4 were significantly up-regulated after SAL treatment. Salidroside alleviates ALI caused by sepsis by inhibiting ferroptosis.
Salidroside attenuates sepsis-induced acute lung injury by inhibiting ferroptosis-dependent pathway.
红景天苷通过抑制铁死亡依赖性途径减轻脓毒症引起的急性肺损伤
阅读:6
作者:Zhen Lingling, Hou Mingtong, Wang Shengbao
| 期刊: | Korean Journal of Physiology & Pharmacology | 影响因子: | 2.200 |
| 时间: | 2024 | 起止号: | 2024 Nov 1; 28(6):549-558 |
| doi: | 10.4196/kjpp.2024.28.6.549 | 研究方向: | 信号转导 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
