Skeletal Muscle Mitochondria Contain Nuclear-Encoded RNA Species Prior to and Following Adaptation to Exercise Training in Rats

大鼠运动训练适应前后骨骼肌线粒体中含有核编码RNA种类

阅读:2
作者:Jessica L Silver ,Séverine Lamon ,Stella Loke ,Gisella Mazzarino ,Larry Croft ,Mark Ziemann ,Megan Soria ,Glenn D Wadley ,Adam J Trewin
Skeletal muscle mitochondria adaptation to exercise training is mediated by molecular factors that are not fully understood. Mitochondria import over 1000 proteins encoded by the nuclear genome, but the RNA population resident within the organelle is generally thought to be exclusively encoded by the mitochondrial genome. However, recent in vitro evidence suggests that specific nuclear-encoded miRNAs and other noncoding RNAs (ncRNAs) can reside within the mitochondrial matrix. Whether these are present in mitochondria of skeletal muscle tissue, and whether this is affected by endurance training-a potent metabolic stimulus for mitochondrial adaptation-remains unknown. Rats underwent 4 weeks of moderate-intensity treadmill exercise training, then were humanely killed and tissues were collected for molecular profiling. Mitochondria from gastrocnemius skeletal muscle were isolated by immunoprecipitation, further purified, and then the resident RNA was sequenced to assess the mitochondrial transcriptome. Exercise training elicited typical transcriptomic responses and functional adaptations in skeletal muscle, including increased mitochondrial respiratory capacity. We identified 24 nuclear-encoded coding or noncoding RNAs in purified mitochondria, in addition to 50 nuclear-encoded miRNAs that met a specified abundance threshold. Although none were differentially expressed in the exercise vs. control group at FDR < 0.05, exploratory analyses suggested that the abundance of 3 miRNAs was altered (p < 0.05) in mitochondria isolated from trained compared with sedentary skeletal muscle. We report the presence of a specific population of nuclear-encoded RNAs in the mitochondria isolated from rat skeletal muscle tissue, which could play a role in regulating exercise adaptations and mitochondrial biology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。