Inosine Triphosphate Pyrophosphatase Dephosphorylates Ribavirin Triphosphate and Reduced Enzymatic Activity Potentiates Mutagenesis in Hepatitis C Virus.

三磷酸肌苷焦磷酸酶使利巴韦林三磷酸去磷酸化,酶活性降低会增强丙型肝炎病毒的诱变作用

阅读:5
作者:Nyström Kristina, Wanrooij Paulina H, Waldenström Jesper, Adamek Ludmila, Brunet Sofia, Said Joanna, Nilsson Staffan, Wind-Rotolo Megan, Hellstrand Kristoffer, Norder Helene, Tang Ka-Wei, Lagging Martin
A third of humans carry genetic variants of the ITP pyrophosphatase (ITPase) gene (ITPA) that lead to reduced enzyme activity. Reduced ITPase activity was earlier reported to protect against ribavirin-induced hemolytic anemia and to diminish relapse following ribavirin and interferon therapy for hepatitis C virus (HCV) genotype 2 or 3 infections. While several hypotheses have been put forward to explain the antiviral actions of ribavirin, details regarding the mechanisms of interaction between reduced ITPase activity and ribavirin remain unclear. The in vitro effect of reduced ITPase activity was assessed by means of transfection of hepatocytes (Huh7.5 cells) with a small interfering RNA (siRNA) directed against ITPA or a negative-control siRNA in the presence or absence of ribavirin in an HCV culture system. Low ribavirin concentrations strikingly depleted intracellular GTP levels in HCV-infected hepatocytes whereas higher ribavirin concentrations induced G-to-A and C-to-U single nucleotide substitutions in the HCV genome, with an ensuing reduction of HCV RNA expression and HCV core antigen production. Ribavirin triphosphate (RTP) was dephosphorylated in vitro by recombinant ITPase to a similar extent as ITP, a naturally occurring substrate of ITPase, and reducing ITPA expression in Huh 7.5 cells by siRNA increased intracellular levels of RTP in addition to increasing HCV mutagenesis and reducing progeny virus production. Our results extend the understanding of the biological impact of reduced ITPase activity, demonstrate that RTP is a substrate of ITPase, and may point to personalized ribavirin dosage according to ITPA genotype in addition to novel antiviral strategies.IMPORTANCE This study highlights the multiple modes of action of ribavirin, including depletion of intracellular GTP and increased hepatitis C virus mutagenesis. In cell culture, reduced ITP pyrophosphatase (ITPase) enzyme activity affected the intracellular concentrations of ribavirin triphosphate (RTP) and augmented the impact of ribavirin on the mutation rate and virus production. Additionally, our results imply that RTP, similar to ITP, a naturally occurring substrate of ITPase, is dephosphorylated in vitro by ITPase.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。