In vivo pharmacokinetic, pharmacodynamic and brain concentration comparison of fentanyl and para-fluorofentanyl in rats.

芬太尼和对氟芬太尼在大鼠体内的药代动力学、药效学和脑浓度比较

阅读:7
作者:Canfield Jeremy R, Sprague Jon E
In 2022, para-fluorofentanyl (pFF) rose to the 6th most reported drug and the most reported fentanyl analog in the United States according to the Drug Enforcement Administration (DEA). pFF differs from fentanyl by the addition of a single fluorine group. To date, pFF has not been extensively evaluated in vivo and is frequently seen in combination with fentanyl. In the present study, the pharmacodynamic (PD) and pharmacokinetic (PK) properties and brain region-specific concentrations of pFF were evaluated in male Sprague-Dawley rats and compared to fentanyl. A 300 μg/kg subcutaneous dose of fentanyl or pFF was administered to assess PD and PK parameters as well as brain region concentrations. PD parameters were evaluated via a tail flick test to evaluate analgesia and core body temperature to measure hypothermia, a surrogate marker of overall opioid toxicity. Fentanyl and pFF were found to be equally active at the tested dose in terms of tail flick response with both compounds producing an analgesic response that lasted up to 240 min post-drug treatment. pFF induced a significantly greater hypothermic effect compared to fentanyl with a maximum temperature decrease of -5.6 ℃. Plasma PK parameters (T(1/2), AUC, etc.) did not differ between fentanyl and pFF. However, pFF concentrations in the medulla, hippocampus, frontal cortex and striatum were more than two times the fentanyl concentrations. The increase in brain concentrations and greater hypothermic effect suggests that pFF is potentially more dangerous than fentanyl.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。