This paper presents a Bayesian analysis of linear mixed models for quantile regression using a modified Cholesky decomposition for the covariance matrix of random effects and an asymmetric Laplace distribution for the error distribution. We consider several novel Bayesian shrinkage approaches for both fixed and random effects in a linear mixed quantile model using extended L1 penalties. To improve mixing of the Markov chains, a simple and efficient partially collapsed Gibbs sampling algorithm is developed for posterior inference. We also extend the framework to a Bayesian mixed expectile model and develop a Metropolis-Hastings acceptance-rejection (MHAR) algorithm using proposal densities based on iteratively weighted least squares estimation. The proposed approach is then illustrated via both simulated and real data examples. Results indicate that the proposed approach performs very well in comparison to the other approaches.
Shrinkage estimation of fixed and random effects in linear quantile mixed models.
线性分位数混合模型中固定效应和随机效应的收缩估计
阅读:4
作者:Ji Yonggang, Shi Haifang
| 期刊: | J Appl Stat | 影响因子: | 0.000 |
| 时间: | 2022 | 起止号: | 2021 Aug 6; 49(14):3693-3716 |
| doi: | 10.1080/02664763.2021.1962262 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
