Pigmentation plays a vital role in the survival of organisms, supporting functions such as camouflage, communication, and mate attraction. In vertebrates, these functions are mediated by specialized pigment cells known as chromatophores of which, uric acid crystal-forming leucophores remain the least understood, with little known about their molecular mechanisms. A key question in pigment cell biology is whether different crystal chemistries require distinct molecular pathways, or whether similar cellular processes drive the formation of diverse crystals. This study was designed to unravel the uncharacterized process of uric acid crystallization in leucophores and compare them to guanine crystal formation in iridophores and pterin formation in xanthophores. The results of our transcriptomic, ultrastructural, and metabolomic analyses, demonstrate that leucophores share molecular pathways with iridophores, particularly those connected to organelle organization and purine metabolism, but express discrete genes involved in uric acid biosynthesis and storage. Additionally, leucophores share intracellular trafficking and pterin biosynthesis genes with xanthophores, suggesting universally conserved processes. Ultrastructural studies reveal star-like fibrous structures in leucosomes, which likely serve as scaffolds for unique one-dimensional uric acid assemblies that radiate from the core and act as efficient light scatterers. These findings provide insights into leucophore cell biology and the specialized mechanisms driving molecular crystalline assembly, and reveal that while some cellular processes are conserved, the specific chemistry of each crystal type drives the evolution of distinct molecular pathways.
Specialized molecular pathways drive the formation of light-scattering assemblies in leucophores.
特殊的分子途径驱动着白细胞中光散射组装体的形成
阅读:5
作者:Barzilay Yuval, Eyal Zohar, Noy Yael, Varsano Neta, Olender Tsviya, Bera Sourabh, Lerer-Goldshtein Tali, Kedmi Merav, Porat Ziv, Pinkas Iddo, Levin-Zaidman Smadar, Dezorella Nili, Gur Dvir
| 期刊: | Proceedings of the National Academy of Sciences of the United States of America | 影响因子: | 9.100 |
| 时间: | 2025 | 起止号: | 2025 Jun 3; 122(22):e2424979122 |
| doi: | 10.1073/pnas.2424979122 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
