BACKGROUND: The legume cowpea (Vigna unguiculata L.) is extensively grown in sub-Saharan Africa. Cowpea, like many legumes has proved recalcitrant to plant transformation. A rapid transient leaf assay was developed for testing gene expression and editing constructs prior to stable cowpea transformation, to accelerate cowpea and legume crop improvement. RESULTS: Attempts to develop a transient protoplast system for cowpea were unsuccessful. Leaflets from plants 3-4Â weeks post-germination were age selected to establish a rapid Agrobacterium (Agro) infiltration-mediated transient system for efficacy testing of gene expression and CRISPR/Cas9 gene editing constructs. In planta, Agro-infiltration of leaflets with fluorescent expression constructs, resulted in necrosis. By contrast, Agro-infiltration of detached leaflets with an Arabidopsis (At) ubiquitin3 promoter:ZsGreen construct, followed by culture on solid nutrient medium resulted in fluorescence in over 48% of leaf cells. Expression efficiency was leaf age-dependent. Three cowpea meiosis genes were identified for CRISPR/Cas9 gene-editing, with the forward aim of meiosis-knock out for asexual seed induction in cowpea. Constructs were designed and tested containing candidate gene-specific guide RNAs, expressed using either the cowpea or Arabidopsis U6 promoters with Cas9 expression directed by either the Arabidopsis 40S ribosomal protein or parsley ubiquitin4-2 promoters. Leaflets were infiltrated with test gene-editing constructs and analytical methods developed to identify gene-specific mutations. A construct that produced mutations predicted to induce functional knockout of in the VuSPO11-1 meiosis gene was tested for efficacy in primary transgenic cowpea plants using a previously established stable transformation protocol. Vuspo11-1 mutants were identified, that cytologically phenocopied spo11-1 mutants previously characterized in Arabidopsis, and rice. Importantly, a biallelic male and female sterile mutant was identified in primary transgenics, exhibiting the expected defects in 100% of examined male and female meiocytes. CONCLUSION: The transient, detached cowpea leaf assay, and supporting analytical methods developed, provide a rapid and reproducible means for testing gene expression constructs, and constructs for inducing mutagenesis in genes involved in both vegetative and reproductive developmental programs. The method and tested editing constructs and components have potential application for a range of crop legumes.
A detached leaf assay for testing transient gene expression and gene editing in cowpea (Vigna unguiculata [L.] Walp.).
豇豆(Vigna unguiculata [L.] Walp.)瞬时基因表达和基因编辑的离体叶片检测方法
阅读:5
作者:JuraniÄ Martina, Nagahatenna Dilrukshi S K, Salinas-Gamboa Rigel, Hand Melanie L, Sánchez-León Nidia, Leong Weng Herng, How Tracy, Bazanova Natalia, Spriggs Andrew, Vielle-Calzada Jean-Philippe, Koltunow Anna M G
| 期刊: | Plant Methods | 影响因子: | 4.400 |
| 时间: | 2020 | 起止号: | 2020 Jun 15; 16:88 |
| doi: | 10.1186/s13007-020-00630-4 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
