In Parnell & Abrahams (2008 Proc. R. Soc. A464, 1461-1482. (doi:10.1098/rspa.2007.0254)), a homogenization scheme was developed that gave rise to explicit forms for the effective antiplane shear moduli of a periodic unidirectional fibre-reinforced medium where fibres have non-circular cross section. The explicit expressions are rational functions in the volume fraction. In that scheme, a (non-dilute) approximation was invoked to determine leading-order expressions. Agreement with existing methods was shown to be good except at very high volume fractions. Here, the theory is extended in order to determine higher-order terms in the expansion. Explicit expressions for effective properties can be derived for fibres with non-circular cross section, without recourse to numerical methods. Terms appearing in the expressions are identified as being associated with the lattice geometry of the periodic fibre distribution, fibre cross-sectional shape and host/fibre material properties. Results are derived in the context of antiplane elasticity but the analogy with the potential problem illustrates the broad applicability of the method to, e.g. thermal, electrostatic and magnetostatic problems. The efficacy of the scheme is illustrated by comparison with the well-established method of asymptotic homogenization where for fibres of general cross section, the associated cell problem must be solved by some computational scheme.
An integral equation method for the homogenization of unidirectional fibre-reinforced media; antiplane elasticity and other potential problems.
单向纤维增强介质均质化的积分方程方法;反平面弹性及其他潜在问题
阅读:8
作者:Joyce Duncan, Parnell William J, Assier Raphaël C, Abrahams I David
| 期刊: | Proceedings of the Royal Society A-Mathematical Physical and Engineering Sciences | 影响因子: | 3.000 |
| 时间: | 2017 | 起止号: | 2017 May;473(2201):20170080 |
| doi: | 10.1098/rspa.2017.0080 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
