Arsenic toxicity in the Drosophila brain at single cell resolution.

果蝇大脑中砷的毒性在单细胞分辨率下的变化

阅读:5
作者:Chaturvedi Anurag, Shankar Vijay, Simkhada Bibhu, Lyman Rachel A, Freymuth Patrick, Howansky Elisabeth, Collins Katelynne M, Mackay Trudy F C, Anholt Robert R H
Arsenic is an ubiquitous environmental toxicant with harmful physiological effects, including neurotoxicity. Modulation of arsenic-induced gene expression in the brain cannot be readily studied in human subjects. However, Drosophila allows quantification of transcriptional responses to neurotoxins at single cell resolution across the entire brain in a single analysis. We exposed Drosophila melanogaster to a chronic dose of NaAsO(2) that does not cause rapid lethality and measured survival and negative geotaxis as a proxy of sensorimotor integration. Females survive longer than males but show earlier physiological impairment in climbing ability. Single-nuclei RNA sequencing showed widespread sex-antagonistic transcriptional responses with modulation of gene expression in females biased toward neuronal cell populations and in males toward glial cells. However, differentially expressed genes implicate similar biological pathways. Evolutionary conservation of fundamental processes of the nervous system enabled us to translate arsenic-induced changes in transcript abundances from the Drosophila model to orthologous human neurogenetic networks.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。