A non-antibiotic-disrupted gut microbiome is associated with clinical responses to CD19-CAR-T cell cancer immunotherapy

未受抗生素干扰的肠道微生物群与CD19-CAR-T细胞癌症免疫疗法的临床疗效相关。

阅读:2
作者:Christoph K Stein-Thoeringer # ,Neeraj Y Saini # ,Eli Zamir # ,Viktoria Blumenberg # ,Maria-Luisa Schubert # ,Uria Mor ,Matthias A Fante ,Sabine Schmidt ,Eiko Hayase ,Tomo Hayase ,Roman Rohrbach ,Chia-Chi Chang ,Lauren McDaniel ,Ivonne Flores ,Rogier Gaiser ,Matthias Edinger ,Daniel Wolff ,Martin Heidenreich ,Paolo Strati ,Ranjit Nair ,Dai Chihara ,Luis E Fayad ,Sairah Ahmed ,Swaminathan P Iyer ,Raphael E Steiner ,Preetesh Jain ,Loretta J Nastoupil ,Jason Westin ,Reetakshi Arora ,Michael L Wang ,Joel Turner ,Meghan Menges ,Melanie Hidalgo-Vargas ,Kayla Reid ,Peter Dreger ,Anita Schmitt ,Carsten Müller-Tidow ,Frederick L Locke ,Marco L Davila ,Richard E Champlin ,Christopher R Flowers ,Elizabeth J Shpall ,Hendrik Poeck ,Sattva S Neelapu ,Michael Schmitt ,Marion Subklewe ,Michael D Jain ,Robert R Jenq ,Eran Elinav

Abstract

Increasing evidence suggests that the gut microbiome may modulate the efficacy of cancer immunotherapy. In a B cell lymphoma patient cohort from five centers in Germany and the United States (Germany, n = 66; United States, n = 106; total, n = 172), we demonstrate that wide-spectrum antibiotics treatment ('high-risk antibiotics') prior to CD19-targeted chimeric antigen receptor (CAR)-T cell therapy is associated with adverse outcomes, but this effect is likely to be confounded by an increased pretreatment tumor burden and systemic inflammation in patients pretreated with high-risk antibiotics. To resolve this confounding effect and gain insights into antibiotics-masked microbiome signals impacting CAR-T efficacy, we focused on the high-risk antibiotics non-exposed patient population. Indeed, in these patients, significant correlations were noted between pre-CAR-T infusion Bifidobacterium longum and microbiome-encoded peptidoglycan biosynthesis, and CAR-T treatment-associated 6-month survival or lymphoma progression. Furthermore, predictive pre-CAR-T treatment microbiome-based machine learning algorithms trained on the high-risk antibiotics non-exposed German cohort and validated by the respective US cohort robustly segregated long-term responders from non-responders. Bacteroides, Ruminococcus, Eubacterium and Akkermansia were most important in determining CAR-T responsiveness, with Akkermansia also being associated with pre-infusion peripheral T cell levels in these patients. Collectively, we identify conserved microbiome features across clinical and geographical variations, which may enable cross-cohort microbiome-based predictions of outcomes in CAR-T cell immunotherapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。