Cytosine base editors (CBEs) revolutionize genome editing by enabling precise C-to-T conversions without double-strand breaks. Sdd7, a recently developed cytosine deaminase, exhibits high activity across a broad protospacer range but induces unintended off-target effects, including bystander mutations within and upstream of the protospacer and both gRNA-dependent and independent deamination. Here, we report that BE4max and Sdd7 induce bystander editing upstream of the protospacer. To overcome this, we engineer two Sdd7 variants, Sdd7e1 and Sdd7e2, enhancing specificity while preserving on-target efficiency. These variants display reduced bystander editing, narrowed editing windows, and significantly lower off-target activity. Delivery as ribonucleoproteins via engineered virus-like particles (eVLPs) further improves specificity, nearly eliminating bystander edits and increasing precise single-point mutations. Our findings establish Sdd7e1 and Sdd7e2, especially when delivered via eVLP, as high-fidelity CBEs poised for safe, precise therapeutic genome editing.
Engineered Sdd7 cytosine base editors with enhanced specificity.
经过改造的Sdd7胞嘧啶碱基编辑器具有更高的特异性
阅读:10
作者:Hwang Hye-Yeon, Lee Minyoung, Yi Hwalin, Seok Cheong, Lim Kayeong, Na Yi Rang, Kang Jong-Sun, Park Jae-Hyun, Kim Daesik
| 期刊: | Nature Communications | 影响因子: | 15.700 |
| 时间: | 2025 | 起止号: | 2025 Jul 1; 16(1):5881 |
| doi: | 10.1038/s41467-025-60789-z | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
