A novel predict-then-optimize method for sustainable bike-sharing management: a data-driven study in China.

一种用于可持续自行车共享管理的新型预测-优化方法:一项基于中国数据的研究

阅读:4
作者:Zhou Yu, Li Qin, Yue Xiaohang, Nie Jiajia, Guo Qiang
Sustainable operations management will appeal to the post-pandemic world. As the economy recovers, the surging demand for low-carbon bike-sharing has led to exacerbated mismatch in urban transportation. It is a serious challenge to optimize the reallocation schedule of sharing bikes among multiple positions in a network. To address the problem, we develop a novel predict-then-optimize method consisting of a data-driven robust optimization model and a branch-and-price algorithm. The optimization model derives the predicted demand surplus of each position based on historical data, enabling the optimal reallocation schedule in the network at minimum operational costs. Based on the prediction, the branch-and-price algorithm can find out the best routes of assigning bikes to specific positions that further improves transportation efficiency. Finally, we deploy the predict-then-optimize method to a realistic bike-sharing network in one major city of China. The computational results demonstrate that our method can significantly save the cost of operations and reduce the waste of resources. Therefore, the novel predict-then-optimize method has a great potential to facilitate the sustainable development of bike-sharing systems in urban transportation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。