We report the structure-based design and synthesis of a unique NOS inhibitor, called nanoshutter NS1, with two-photon absorption properties. NS1 targets the NADPH site of NOS by a nucleotide moiety mimicking NADPH linked to a conjugated push-pull chromophore with nonlinear absorption properties. Because NS1 could not provide reducing equivalents to the protein and competed with NADPH binding, it efficiently inhibited NOS catalysis. NS1 became fluorescent once bound to NOS with an excellent signal-to-noise ratio because of two-photon excitation avoiding interference from the flavin-autofluorescence and because free NS1 was not fluorescent in aqueous solutions. NS1 fluorescence enhancement was selective for constitutive NOS in vitro, in particular for endothelial NOS (eNOS). Molecular dynamics simulations suggested that two variable residues among NOS isoforms induced differences in binding of NS1 and in local solvation around NS1 nitro group, consistent with changes of NS1 fluorescence yield. NS1 colocalized with eNOS in living human umbilical vein endothelial cells. Thus, NS1 constitutes a unique class of eNOS probe with two-photon excitation in the 800-950-nm range, with great perspectives for eNOS imaging in living tissues.
Rational design of a fluorescent NADPH derivative imaging constitutive nitric-oxide synthases upon two-photon excitation.
合理设计荧光 NADPH 衍生物,用于在双光子激发下对组成型一氧化氮合酶进行成像
阅读:6
作者:Li Yun, Wang Huan, Tarus Bogdan, Perez Miguel Romero, Morellato Laurence, Henry Etienne, Berka Vladimir, Tsai Ah-Lim, Ramassamy Booma, Dhimane Hamid, Dessy Chantal, Tauc Patrick, Boucher Jean-Luc, Deprez Eric, Slama-Schwok Anny
| 期刊: | Proceedings of the National Academy of Sciences of the United States of America | 影响因子: | 9.100 |
| 时间: | 2012 | 起止号: | 2012 Jul 31; 109(31):12526-31 |
| doi: | 10.1073/pnas.1205645109 | 研究方向: | 免疫/内分泌 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
